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An exact analytical study is presented for the electrophoretic motion of a dielectric 
sphere in the proximity of a large non-conducting plane. The applied electric field is 
parallel to the plane and uniform over distances comparable with the particle radius. 
The particle and plane surfaces are assumed uniformly charged and the thin-double- 
layer assumption is employed. The presence of the wall causes three basic effects on 
the electrophoretic velocity : first, an electro-osmotic flow of the suspending fluid 
exists owing to the interaction between the electric field and the charged wall; 
secondly, the electrical field lines around the particle are squeezed by the wall, 
thereby speeding up the particle ; and thirdly, the wall enhances viscous retardation 
of the moving particle. In  the analysis, corrections to Smoluchowski’s classic 
equation for the electrophoretic velocity in an unbounded fluid are presented for 
various separation distances between the particle and the wall. Of particular interest 
is the electrophoresis for small gap widths, in which ease the net effect of the plane 
wall is to enhance the particle velocity. The particle mobility can be increased by as 
much as 23 Yn when the surface-to-surface spacing is about 0.5 % of the sphere radius. 
For the case of moderate to large separations, the electrophoretic velocity of the 
particle is reduced by the wall, but this effect is much weaker than for sedimentation. 
I n  addition to the translational migration, the electrophoretic sphere rotates a t  the 
same time in the direction opposite to that  which would occur if the sphere 
sedimented parallel to a plane wall. The ratio of rotational-to-translational speeds of 
the sphere is in general larger for electrophoresis than for sedimentation. 

1. Introduction 
When a colloidal particle suspended in an electrolyte solution is subjected to an 

external electric field, the particle will begin to move. This has been termed 
electrophoresis and used in a variety of applications. Ordinarily, the electrophoretic 
motion is examined in an infinite fluid in which the undisturbed electric field is 
constant. If the local radii of curvature of an insulating particle of arbitrary shape 
are large compared with the thickness of the electrical double layer, the 
electrophoretic velocity U, is given by Smoluchowski’s relation (Morrison 1970 ; 
Dukhin & Derjaguin 1974; Hunter 1981): 

In  this equation, E is the fluid permittivity, 7 the fluid viscosity, 
of the particle surface and Em the applied electric field. The 

Cp the zeta potential 
ratio U,/E,, which 
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equals the term in parenthesis, is known as the electrophoretic mobility of the 
particle. 

In many applications of electrophoresis colloidal particles are not isolated and will 
move in the presence of neighbouring particles and/or surfaces. The coupled 
electrophoretic motions for two dielectric spheres in the limit K a  + co were computed 
by Reed & Morrison (1976), where K is the Debye screening parameter and a is the 
particle radius. Considering a situation encountered in electro-deposition of colloids 
a t  metallic electrodes, Morrison & Stukel(l970) solved the problem of electrophoresis 
of an insulating sphere normal to a conducting plane using spherical bipolar 
coordinates. Recently Keh & Anderson (1985) examined electrophoretic motions of 
a charged non-conducting sphere in the proximity of various rigid boundaries. Using 
a method of reflections, they determined the particle velocity for a constant applied 
electric field in increasing powers of h up to O(h6), where h is the ratio of particle 
radius to distance from the boundary. Their results showed that boundary effects on 
electrophoresis are weak for small to moderate values of A,  say h < 0.5. 

In the present paper, our objective is to obtain an exact solution to the problem 
of the electrophoretic motion of a single colloidal sphere parallel to a non-conducting 
plane. Both the particle and wall surfaces are assumed uniformly charged and the 
applied electric field is assumed constant over distances comparable with the particle 
radius. The rotation of the electrophoretic particle induced by the plane is allowed. 
An important assumption is that the Debye screening length is much smaller than 
the particle radius and the surface-to-surface spacing between the particle and the 
wall. Thus, the effect considered in the analysis is not due to any interaction between 
the double layers around the particle and adjacent to the wall. 

2. Analysis 
Consider the electrophoretic motion of an insulating sphere of radius a in the 

direction parallel to an infinite dielectric plane located at  a distance b from the sphere 
centre. The applied electric field Em ex, acting tangential to the plane wall, is assumed 
constant over distances comparable with the particle radius. ex is a unit vector in 
Cartesian coordinates. Our purpose is to determine the correction to Smoluchowski’s 
equation (1) for the particle due to the presence of the plane. 

For conveniently satisfying the boundary conditions a t  solid surfaces, an 
orthogonal curvilinear coordinate system (E l  Y,  @) known as spherical bipolar 
coordinates, shown in figure 1, is utilized to solve this problem. This coordinate 
system is related to cylindrical polar coordinates (p,  z ,  @), which share the same 
origin as the Cartesian coordinate system, by the relations (Morse & Feshbach 1953 ; 
Happel & Brenner 1983): 

(2a)  
c sin Y 

= cosht-cos Y ’  

where c is a characteristic length in the bispherical coordinate system. 
The coordinate surfaces 5 = constant correspond to  a family of coaxial spheres 

whose centres lie along the z-axis. The special case 6 = 0 is a sphere of infinite radius 
and represents the plane at  z = 0. 6 = to corresponds to the boundary of the sphere 
of radius a = c cosech to, with its centre at the point z = b = c coth to and p = 0. The 
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t "  

FIGURE 1 .  Geometrical sketch of the electrophoretic system 

relation between 6, and A ,  the ratio of particle radius to the distance of the particle 
centre from the plane wall, is 

h = aJb = sech6,. (3) 

To determine the electrophoretic velocity of the insulating particle near the 
charged plane, it is necessary to ascertain the electrical potential and fluid velocity 
distributions. 

2.1. Electrical potential distribution 
Since the fluid outside the thin double layer is neutral and is assumed to be of 
constant conductivity, the electrostatic equation governing the potential distribution 
&x) is Laplace's equation : 

vz$6 = 0. (4) 
The boundary conditions require that the potential gradient far away from the 
particle approach the uniform applied electric field and that the normal component 
of the current flux at  each surface be identically zero, since both the plane wall and 
the particle are insulating. Thus. 

eS.Vq5 = 0 a t  6 = 0, ( 5  a )  

e5-Vq5 = 0 a t  6 = to, (fib) 

$6+-EE,x as(p2+z2);+m, (5cl 
where x' = p cos 0. 

conditions is (Morse & Feshbach 1953; Reed & Morrison 1976) 
A general solution to Laplace's equation suitable for satisfying these boundary 

n 

q5 = cE,(cosht-cos Y); C {R, sinh(n+$)t+S,  cosh(n+i) t> 
n=1 

x sin YPh(cos Y) cos 0 - cZE, sin Y (cosh [-- cos Y)-l cos @, (6) 

where P, is the Legendre polynomial of order n and the prime denotes differentiation 
with respect to cos Y.  Boundary condition ( 5 c )  is immediately satisfied by a solution 
of this form. 

Ji L \ I  l!M I :I 
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[Jtilizing the expansion, which can be derived using the generating function of the 

(7) 

as well as thc recurrence relations of the Legendre polynomials, application of the 
boundary conditions ( 5 a )  and (5 6 )  yields the following relations for the coefficients : 

Legendre polynomials, 
co 

(cosht-cos Y)-g = 2t C e x p [ - ( n + ~ ) [ ] P ~ ( c o s  Y), 
n=n 

R, = 0, 
and 

Xn+,(n + 2 )  sinh (n + i) to +X,-,(n - 1) sinh (n - t )  fl, -8, 

x {n sinh (n  - t )  go + (n  + 1 )  sinh (n  + :) g,} = 2% exp [ - (n  + t )  5,] sinh 5,. (8 b )  
Owing to the geometrical symmetry, this electric field is identical to that about 

two equal dielectric spheres when the electric field E ,  e, is imposed perpendicular to  
their line of centres. This case was solved by Reed & Morrison (1976) in the analysis 
of the electrophoretic motion of two spheres. Since coefficients X, decrease as n 
becomes large, the recursion relation ( 8 6 )  can be solved from the first N equations, 
provided that N is sufficiently large that S,,, is negligible. 

2.2. Fluid velocity distribution 

With knowledge of the solution for the electric field, E ( x )  = -V$, we can now 
proceed to find the fluid velocity distribution. Owing to the low velocities encountered 
in electrokinetic flows, the fluid motion outside the thin double layer is governed by 
the Stokes equations : 

$72u-vp = 0, (9a) 

w - v  = 0, (9a) 

where v(x )  is the fluid velocity and p is the pressure. 
Because the electric field interacts with the double layer a t  the non-conducting 

solid surface to produce a relative tangential fluid velocity a t  the outer edge of the 
double layer and a uniform electro-osmotic flow far away from the particle, the 
boundary conditions are the following (Keh & Anderson 1985) : 

v = - V $  4 W  a t < = O ,  
4x7 

€6 v =  U + Q x r + - L V $  a t f ;= tO,  
4x1;) 

where &, and L&, are the zeta potentials of the particle and of the wall respectively, 
r is the relative position vector about the sphere centre, and Uand Q are respectively 
the translational and rotational velocities of the particle, to be determined. Equation 
(10) provides the coupling between the electric field and the fluid motion, and the 
potential distribution $(x) is given by (6) with coefficients determined from (8). Note 
that the normal component of Vq5 vanishes a t  the surfaces of the particle and 
wall. 

Since the particle ‘surface ’ encloses a neutral body (i.e. charged interface plus 
diffuse ions) and the particle is freely suspended in the fluid, the electric field 
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produces no net force or couple on the particle. Thus the force and torque exerted by 
the fluid on the particle surface must vanish: 

n.x dS = 0, 
surface 

T =  (( r x ( n - z ) d S = O ,  
J J particle 

surface 

where x is the stress tensor and n is the unit normal to the sphere pointing into the 
fluid phase. After solving (9) and (lo),  one can evaluate U and Q by satisfying 
(11). 

As both the governing equations and the boundary conditions are linear, the total 
flow can be decomposed into three flows. First, we consider a sphere translating 
parallel to the plane wall with velocity U and with no angular velocity or tangential 
electrokinetic velocity a t  the particle surface, while the plane surface and the fluid 
far from the particle are moving with a velocity equal to u,. Both U and u ,  are in 
the direction parallel to e,. This flow is the Stokes flow of a sphere moving parallel 
to a plane and has been studied by O’Neill(l964). He found that the force and couple 
acting on the sphere are given by 

Fl = - 6x74 U -  u,) PI, 
Tl = 8xyu2( U-uO,).e,e,a,, 

where PI and a1 are the correction factors to Stoke’s law due to the presence of the 
plane wall. These values depend upon A,  the ratio of the sphere radius to the distance 
of the sphere centre from the wall, and were numerically determined. 

Next, we consider the fluid motion caused by the rotation of a sphere about an axis 
parallel to a nearby plane wall bounding a semi-infinite fluid a t  rest a t  infinity. The 
angular velocity a t  the sphere surface is Q which is in the direction normal to ex. The 
Stokes equations for this flow were solved by Dean & O’Neill(l963) and the force and 
couple exerted by the fluid on the sphere can be expressed as 

T, = - ~T~~CL’L?CX,, ( 1 3 b )  

where the wall-correction factors /I2 and a, also depend upon the value of A. Although 
Dean & O’Neill’s theoretical analysis was legitimate, their numerical computations 
were incorrect, as pointed out by Goldman, Cox & Brenner (1967). 

Finally, we consider the flow of a stationary sphere near a stationary plane wall 
with an electrokinetic tangential velocity a t  both solid surfaces, namely, 

u=--Wq5-vu, €6, a t < = O ,  
4x7 

v - + o  as (p2+z2)i  + co. (14c) 

Here we use the term ‘surface’ to mean outer edge of the double layer. Superposing 
this velocity field with those of wall-bounded Stokes flows caused by a translating 

1:i 2 
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sphere with velocity ( U -  v,)  and by a rotating sphere with angular velocity a will 
yield the total velocity field produced in the electrophoretic motion of a dielectric 
sphere parallel to a non-conducting plane wall. By obtaining expressions for the force 
and torque exerted on the stationary sphere, individually adding these to the forces 
and torques given by (13) and (13) and equating the results to zero, Smoluchowski’s 
equation with wall corrections will result. This procedure satisfies the requirement 
that the applied electric field produces no net force and torque on the particle. 

To find the drag and couple acting on the stationary sphere with a tangential 
velocity distribution, analytical techniques of the corresponding bounded Stokes’ 
flow will be used. A general solution of (9a )  satisfying the boundary condition ( l ac )  
was given by O’Neill (1964) : 

1 
2 C  

V ,  =-Uo[~Ql+2~WlJ COS@, 

zia = +Uo [ V, - V,]  sin @, 

where IT, is a characteristic velocity and is taken to be eCPE,/4n7 
convenience. 

In  the above equations, Ql, V,, V, and W, are scalar auxiliary functions 
z (or of 6 and Y),  with the following expansion forms: 

m 

ITl = (cosh[-cos!P):sinY C [Ancosh(n+$)<+Bnsinh(n++)[] P ~ ( c o s Y ) ,  

Q1 = (cosht-cos !P);sin Y C [C, cosh(n+i)6+Dn sinh(n+i)c]Pb (cos Y),  

(16a) 
n=1 

a 

(16b) 
n=1 

m 

I; = (cosh[-cos!P)i S [E,cosh(n+i)[+F,s inh(n+i)c]P,(cosY),  (164 
n=O 

m 

V2 = (cosh[-cosY)isin2Y S [G, cosh(n+i)[+Hnsinh(n+i)6]Ph(cosY). (16d) 

The coefficients of these expansions remain to be determined from the boundary 
conditions as well as the equation of continuity. 

Substituting the solution for the electrical potential distribution, (6) and (8), as 
well as the solution for the fluid motion, (15) and (16), into the continuity equation 
(96) and the boundary conditions (14a, b ) ,  it is found that the coefficients of the 
auxiliary functions must satisfy the following algebraic recursion formulae :f 

n=z 

8 n+2 

C C ciik Kj”’ = di ,  i = 1, 2, ..., 8, 
k = l  j=n -2  

where Kik’ denotes the coefficients A j ,  B j ,  Cj, D j ,  E j .  4, Gj and Hi for k equal t,o the 
integers from 1 to 8 respectively; cijk and di arc functions of go, cW/cP, and n. The 

t These formulae are lengthy: the full versions are available on request from either the editor 
or the authors. 
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recurrence relations of the Legendre polynomials as well as expansions derived from 
the generating function of the Legendre polynomials were used to expand 
the boundary conditions. Because the coefficients become small with large n, 
simultaneous solution of (17) for the first N sets yields 8N coefficients, thereby 
determining the velocity distribution for the fluid. 

The force on the sphere due to the electrokinetic fluid motion can be evaluated by 
direct surface integration using the first part of (1 1 a) together with the coefficients 
of the auxiliary functions (16) for the velocity and pressure distributions (15), and is 
given by (O’Neill 1964): 

with 
F3 = 6~7aUoe,(Pp+YPw). (18a)  

( 1 8 b )  
m 

1 / 1 2  
Pp+yP, = ---sinh[, Z [ (En+Fn)+n(n+l )  (C,+D,)I, 

6 n=o 

and y = The correction factors PP and p, can be separately determined from 
( 1 8 b )  by taking c, and lP equal to zero, in turn. 

The torque about the sphere centre exerted by the fluid on the stationary sphere 
must be evaluated by surface integration using (1 1 b) .  In  the Appendix we show that, 
for this electrokinetic case, 

T3 = - 8x7aZ U ,  eg(ap + yaw), 
with 

m 

ap+ya, = -- ‘’ sinh2 to C [n(n + 1 )  [2A, + 2R, + ~ 0 t h  [,(C, +on)] 
8 n=o 

- (2n + 1 - coth 5,) ( E ,  +Fn)] .  (19b) 
The correction factors up and a, can be determined in a similar way to those ofPp 
and p,, 

2.3.  Derivation of the particle velocity 
Since the net force and net torque acting on the electrophoretic particle must vanish 
to fulfill the requirement of ( l l ) ,  we have 

and 

F,+F2+F3 = 0, 

Tl+ Tz+ T3 = 0. 

Here the individual forces are presented in (12a), (13a) and (18), while the couples 
are given by (12b) ,  (13b) and (19). To determine the translational velocity U and 
angular velocity SL of the particle, the above two equations must be solved 
simultaneously after the substitution of (12), ( 1 3 ) ,  (18)  and (19) into them. The 
results are 

Numerical calculations for various values of the zeta-potential ratio y and the 
dimensionless separation parameter h find that the following relations always 
exist: 

(23a,  b )  
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Namely, the wall-corrected electrophoretic velocity of the sphere has the following 
two parts 

The result of ( 2 3 a ) ,  that the wall does not deflect the direction of electrophoresis and 
the electrophoretic mobility is proportional to the zeta-potential difference between 
the particle and the wall; is consistent with the analytical derivation from the 
method of reflections assuming that the particle translates without rotation (Keh &, 
Anderson 1985). The existence of the parallel plane causes the particle to rotate in 
the direction normal to thc applied electric field and parallel to the wall; its 
magnitude is also proportional to the zeta-potential difference, as shown in (23b). 

3. Results and discussion 
The coefficients of the electrical-potential distribution (6) and the velocity field 

(15) and (16) have been calculated for different values of h and y using a digital 
computer. For the case of h = 0.995, N equal to about 200 was employed such that 
the (iV + l ) t h  terms of these coefficients are negligible and increases in N do not change 
thc calculated values appreciably. Numerical results for the wall-corrected reduced 
electrophoretic mobility (a2pp -ap P2)/(a2 P1 -a1 P2)  and the wall-induced non- 
dimensional angular velocity - (-a1Pp - -a,/31)/(-al -a, P1), for various values of A ,  
are presented in the first, second and third columns of table 1 and depicted in 
figure 2. For the motion of a sphere on which a constant force Fez (e.g. a gravitational 
field) is applied parallel to a plane wall, the exact results of the translational and 
rotational velocities were developed using bispherical coordinates by O’Neill (1964) 
and Dean &, O’h’eill (1963). The asymptotic lubrication-theory-type solutions for 
small gap widths have also been obtained (O’Neill &, Stewartson 1967; Goldman 
P t  al. 1967). The Stokes’-law correction for various separation distances was 
computed in the absence of external torques on the sphere and the results are given 
in the fourth and last columns of table 1 for a comparison. 

The following important features of table 1 and figure 2 should be noted: 
(i)  For all h 5 0.77, the electrophoretic mobility is a monotonic decreasing 

function of A ;  beyond this region, the mobility increases with increasing h and values 
of 47cy /~E , (C~-<~)  greater than unity are observed for h 2 0.908. This interesting 
phenomenon is understandable given that the wall effcct on the interaction between 
particle and electric field tends to enhance the translational electrophoretic velocity, 
while the fluid dynamics are affected in a way that tends to slow down the particle 
(Keh & Andcrson 1985). The second effect is stronger for the case h 5 0.908, and 
hence the net cffect is a retardation of the particle velocity. For values of h 2 0.908, 
the effect of the wall on the electric field is stronger than that on the viscous drag, 
and the net effect is to  speed up the particle. The reason that the electrical force 
driving the motion is enhanced by the plane wall is obvious from the crowding of the 
electric field lines to squeeze between the particle and the wall. Note that, in the limit 
of K a  + OC, , the particle velocity for the case h = 0.995 can be as much as 23 YO higher 
than the Smoluchowski’s result with the boundary being far away from the 
par ticle. 

(ii) Concerning the translational velocity of the particle, the wall effect on 
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-0.2 r" 

electrophoresis 

d % s  
* s  v 

sedimentation 

h 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.93 
0.95 
0.97 
0.98 
0.99 
0.995 

4xvu 

.(CP - 6) Em 

1 .ooo 000 
0.999 939 
0.999532 
0.998 534 
0.996836 
0.994486 
0.991 723 
0.990348 
0.989 149 
0.988 379 
0.988532 
0.990704 
0.997 886 
1.008 469 
1.022 313 
1.050 854 
1.080279 
1.145361 
1.230 600 

4nvaS2 

d$ - 5,) E ,  
0 

- 0 .ooo 0 19 
- 0.000 301 
-0.001 535 
-0.004922 
-0.012333 
- 0.026 692 
-0.037 903 
- 0.053007 
-0.073462 
-0,101637 
-0.141 886 
- 0.203 89 1 
-0.261 934 
- 0.31 8 899 
-0.408902 
- 0.483 41 9 
-0.618316 
-0.765327 

6n7aU 

F 

1 .ooo 000 
0.943 857 
0.888 209 
0.833 155 
0.778389 
0.723 21 2 
0.666 452 
0.636911 
0.606 131 
0.573570 
0.538383 
0.499 101 
0.452715 
0.418 558 
0.390761 
0.354974 
0.330917 
0.296559 
0.268673 

6n7a2Q 
F 

0 
0.000 009 
0.000 123 
0.000 559 
0.001 587 
0.003488 
0.006 540 
0.008586 
0.01 1 033 
0.0 13 930 
0.017 339 
0.021 347 
0.026079 
0.029 342 
0.031 720 
0.034240 
0.035493 
0.036534 
0.036638 

TABLE 1 .  Comparison of the normalized translational and rotational velocities of a sphere 
moving parallel to a plane for the cases of electrophoresis and sedimentation 

L I 

A 

FIGURE 2. Plot of the normalized electrophoretic mobility and angular velocity 
versus the ratio of particle radius to distance from the wall. 
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electrophoresis is much weaker than for sedimentation, because the disturbancc to 
the fluid velocity field caused by the electrophoretic particle in an unbounded fluid 
decays (as rP3,  where r is the distance from the particle centre) faster than that 
caused by a Stokeslet (as r - l )  moving under the influence of a body force (Reed & 
Morrison 1976; Keh & Anderson 1985). The lowest value of the non-dimensional 
velocity for electrophoresis is about 0.988 (only 1.2% lower than that in an 
unbounded fluid) which occurs as h - 0 . 7 7 ,  while the reduced mobility for a 
sedimenting particle in this case is as low as about 0.56. 

(iii) The electrophoretic sphere will rotate about an axis which is perpendicular to 
the direction of applied electric field and parallel to the plane wall. It is particularly 
interesting that the direction of rotation is opposite to that which would occur if the 
sphere migrated in the same direction but under a body-force field. This behaviour 
can be explained as follows. The tangential electrokinetic velocity a t  the sphere 
‘surface’ is larger for a point on the near side than for a corresponding position on 
the far sidc to the parallel plane, since the local electric field is intensified for thc gap 
between the particle and the wall. The difference in the frictional drag between the 
two sides caused by the fluid adjacent to the sphere surface (or, more precisely, to the 
outer edge of the double laycr) exerts a couple on the sphere in the direction opposite 
to that of thc couple caused by the hydrodynamic interaction between a translating 
sphere and the parallel plane. The numerical results listed in the third column of 
table 1 show that the electrokinctic effect on the rotation of particle is stronger than 
the pure viscous effect for all values of A ;  the difference in magnitude between these 
two effects increases when the gap thickness decreases. Generally speaking, the 
magnitude of particle angular velocity induced by the wall relative to a translational 
velocity is larger for electrophoresis than for sedimentation. 

Over the past two decades, quite a few studics have been presented concerning the 
hydrodynamic interactions between two force-free moving particles (Reed & 
Morrison 1976; Meyyappan & Subramanian 1984; Bnderson 1985b) and the 
migration of a single force-free particle near a parallel plane wall (Keh & Anderson 
1985; Meyyappan & Subramanian 1987). All of them have assumed that the particles 
translate without rotation. One might question the validity of this assumption and 
determine if the rotation of particles significantly affects their translational velocity. 
The electrophoretic velocity of a sphere, assuming no rotation, near a parallel plane 
for various values of h was calculated using the same procedures but taking Q equal 
to zero; the numerical results are listed in the first and second columns of table 2. The 
corresponding Stokes’ law correction for a translating sphere, without rotation, is 
also given in the last column of table 2 to compare the wall effects. Comparing values 
in tables 1 and 2, we find that the assumption that the particle translates without 
rotation gives too large a correction to electrophoresis, while for sedimentation this 
approximation underestimates the wall correction ; the error is in general larger in 
electrophoresis (5.8% for h = 0.99) than in sedimentation ( -  1.3 YO for h = 0.99). 

Using a method of reflection, Keh & Anderson (1985) obtained the following power 
series expression in h for the electrophoretic motion of a non-rotating sphere parallel 
to a plane wall: 

The coefficient inside the square brackets is listed for various values of h in the third 
column of table 2. It can be found that the solution from the method of reflections 
shown in (24) agrees very well with the exact result even for h values as large as 0.7, 
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4nqu 4nqu 
.Kp - 5,) E ,  .Kp - 6) Em 

(exact (asymptotic 6nl1au 
A solution) solution) F 

0 1.000 000 1 .000000 1.000 000 
0.1 0.999939 0.999939 0.943 857 
0.2 0.999532 0.999 532 0.888209 
0.3 0.998535 0.998528 0.833 155 
0.4 0.996 846 0.996 784 0.778385 
0.5 0.994546 0.994202 0.723 195 
0.6 0.991 973 0.990570 0.666 391 
0.65 0.990825 0.998 207 0.636803 
0.7 0.990031 0.985 325 0.605947 
0.75 0.989979 0.981 744 0.573 267 
0.8 0.991 416 0.977216 0.537 891 
0.85 0.995969 0.971 410 0.498 309 
0.9 1.007 962 0.451 426 
0.93 1.024169 0.416799 
0.95 1.044453 0.388559 
0.97 1.084734 0.352 137 
0.98 1.125 057 0.327 629 
0.99 1.211 846 0.292 631 
0.995 1.322681 0.264 265 

TABLE 2. The normalized electrophoretic mobility (as computed from the exact bipolar coordinate 
solution and the asymptotic method-of-reflection solution) and Stokes mobility for the motion of 
a sphere translating without rotation parallel to a plane 

the error in this case still being less than 0.5 %. However, the exciting result that the 
particle mobility increases when the gap between the particle and the wall gets small 
is not predicted by the asymptotic expression up to O(h6).  

4. Concluding remarks 
The electrophoretic velocity of a dielectric sphere parallel to a charged non- 

conducting plane in the limit KU+ co is obtained in this work. For an open system 
with no pressure gradients far from the particle, a net electro-osmotic flow is allowed 
to occur and the direction of particle motion, either translation or rotation, is 
determined by the difference in zeta potentials (&,-Cw). The wall effect on 
electrophoresis is to slow the particle velocity for large separation distances, but this 
retardation is much weaker than for sedimentation. Peculiarly, the electrophoretic 
velocity of the particle can be enhanced by the neighbouring plane when the gap 
widths become small, as shown in figure 2. This behaviour is understandable because 
the wall affects the electrical force and the viscous force in opposite directions and 
competition between these two forces determines whether the net wall effect is to 
speed up or to slow down the particle motion. A scientific implication of this result 
is that a planar surface can stabilize a particle, with strong viscous forces preventing 
it from moving perpendicular to the planar surface (Maude 1961 ; Brenner 1961 ; Cox 
& Brenner 1967). yet allow it relative freedom in electrophoretic motion parallel to 
the surface. 

Throughout this work we have assumed that KU + 00 with cp and c,,, constant on 
the solid/fluid interfaces. The fluid velocity field for electro-osmotic flows induced by 
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non-uniformly charged walls can bc complicated (Anderson & Idol 1985), and 
dielectrophoresis may occur when &, is not uniform (Anderson 1 9 8 5 ~ ) .  For the 
electrophoresis of spherical particles of finite KU in unbounded fluids, analytic 
expressions and numerical results to correct Smoluchowski’s relation have been 
obtained (O’Brien & Hunter 1981 ; O’Brien & White 1978). 

Similar to  electrophoresis, another example of ‘phoretic motion ’ is the thermo- 
capillary migration of fluid particles in a second fluid possessing a temperature 
gradient. The coupled thermocapillary motions of two gas bubbles (Meyyappan & 
Rubramanian 1984) and two fluid droplets (Anderson 1985b) have been analysed, 
and, more recently, the effect of a plane surface on thermal migration of a gas bubble 
was studicd (Meyyappan & Subramanian 1987). Their results showed that the 
thermocapillary mobility of a bubble parallel to a plane decreases as a strictly 
monotonic function with h ; this effect is also weaker than for a bubble in motion due 
to a body force. A comparison between their computations and our results reveals 
that the wall cffect is in general even weaker in electrophoresis than in 
thermocapillary motions. 

H .  J .  KPh and 8. B. Chon 
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Appendix : Torque exerted on a sphere with arbitrary surface tangential 
velocity distribution 

A particular solution of the Stokes equations for a steady motion of fluid of 
constant density and viscosity flowing around a sphere referred to spherical 
coordinates ( r ,  8, @) with the centre of the sphere as origin is (Dean & O’Neill 
1963) 

vg = U ,  V, cos@, (A l a ,  b ,  c) v, = U ,  V, cos@, vo = U ,  V ,  sin@. 

Here we take t,he characteristic velocity U ,  equal to E&, E,/4ny, the electrophoretic 
velocity of a particle in an unbounded fluid of viscosity y and dielectric constant e, 
consistent with (15). 

Substituting (A 1 )  into the first part of (116) in which 

x = -p /+r] [Vv+(VV)T]  

with I being the unit dyadic, we obtain the couple exerted by the fluid on the sphere 
about the centre: 

sin 8 d8. (A 2) 
1 av, cot8 avo av i 

T =  e , n 7 ~ ~ U , [ [ - - + -  v, + ~ - cos e 2 - - v, + - 
a ae a ar ar a U 

Since the sphere is stationary and the electro-osmotic velocity of the fluid at the 
particle ‘ surface ’ is tangential as given by (14 b ) ,  we have 

avr - 
ae V , = O ,  - - 0  a t r = a .  

Therefore, the first two terms in the brackets of (A 2) vanish. 
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If V, and V, are expressed in terms of the auxiliary functions for the cylindrical 
components of fluid velocity given in (15), (A 2 )  becomes 

cos B sin 6' -~ + cVo) + ~ ( iz&,  + c W,)] sin 8 dB. (A 4) 
?=a a U 

Substituting (16) into the above equation and using relations between spherical and 
bipolar coordinates as well as integral expansions derived from the generating 
function of the Legendre polynomials, we obtain the following expression for the 
torque exerted on the sphere in terms of the coefficients A,, R,, . . . , etc : 

m 

T = ey 2/2x7a2 U ,  sinh2 to C {n(n + 1) [2A, + 2B, + coth Eo(C, + D,)] 
n=O 

- (2n+ 1 - coth to) (En + F,)}. (A 5) 
This formula is equivalent to  (19). 

REFEREXCES 

ANDERSON, J. L. 1985a Effect of nonuniform zeta potential on particle movement in electric field. 
J .  Colloid Interface Sci. 105, 45. 

ANDERSON, J. L. 19856 Droplet interactions in thermocapillary motion. Intl J .  Multiphase Flow 
11, 813. 

ANDERSON, J. L. & IDOL, W, K. 1985 Electroosmosis through pores with nonuniformly charged 

BRENNER, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. 

COX, R. G. & BRENNER, H. 1967 The slow motion of a sphere through a viscous fluid towards a 

DEAN, W. R. 6 O'NEILL, M. E. 1963 A slow motion of viscous liquid caused by the rotation of a 

DUKHIN, S. S. & DERJAGUIN, B. V. 1974 Electrokinetic phenomena. In  Surface and Colloid Science 

GOLDMAN, A. J., Cox, R. G. & BRENNER, H. 1967 Slow viscous motion of a sphere parallel to a 

HAPPEL, J .  & BRENNER, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Xijhoff. 
HUNTER, R. J. 1981 Zeta Potential in Colloid Science. Academic. 
KEH, H. J. & ANDERSON, J. L. 1985 Boundary effects on electrophoretic motion of colloidal 

spheres. J .  Fluid Mech. 153, 417. 
MAUDE, A. U. 1961 End effects in a falling-sphere viscometer. Rr. J .  A&. Phys. 12, 293. 
MEYYAPPAN, M. & SUBRAMANIAN, R. S. 1984 The thermocapillary motion of two bubbles oriented 

MEYYAPPAN, M. & SUBRAMANIAN, R. S. 1987 Thermocapillary migration of a gas bubble in an 

MORRISON, F. A. 1970 Electrophoresis of a particle of arbitrary shape. J .  Cotloid Interface Sci. 34, 

MORRISON, F. A. & STUKEL, J. J. 1970 Electrophoresis of an insulating sphere normal to a 

MORSE, P. M. & FESHBACH, H. 1953 Methods of Theoretical Physics. Part I I .  McGraa Hill. 
O'BRIEN, R. W. & HUNTER, R. J. 1981 The electrophoretic mobility of large colloidal particles. 

Can. J .  Chem. 59, 1878. 

walls. Chem. Engng Commun. 38, 93. 

Chem. Engng Sci. 16, 242. 

plane surface - I1 Small gap widths, including inertial effects. Chem. Engng Sci. 22. 1753. 

solid sphere. Mathematika 10, 13. 

(ed. E. Matijevic), vol. 7. Wiley. 

plane wall - I Motion through a quiescent fluid. Chem. Engng Sci. 22, 637. 

arbitrarily relative to a thermal gradient. J .  Colloid Interface Sci. 97, 291. 

arbitrary direction with respect to a plane surface. J .  Colloid Interface Sci. 115, 206. 

210. 

conducting plane. J .  Colloid Interface Sci. 33, 88. 



390 

~ ’ ~ R I E N ,  R. W. & WHITE, L. R. 1978 Electrophoretic niobility of a spherical colloidal particle. 

OWEILL, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. 

O’KEILL, M. E. & STEWARTSON: K .  1967 On the slow motion of a sphere parallel to a nearby plane 

REED, L. D. & MORRISON, F. A .  1976 Hydrodynamic interactions in electrophoresis. J .  Colloid 

H .  J .  Keh and 8. B. Chen 

J .  Chem. SOC. E’araday Trans.  I1 74, 1607. 

Mathematika 11, 67. 

wall. J .  Fluid Meeh. 27, 705. 

Interface Sci. 54, 117. 


